Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.

Identifieur interne : 000269 ( Main/Exploration ); précédent : 000268; suivant : 000270

MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.

Auteurs : Erica H. Lawrence [États-Unis] ; Clint J. Springer [États-Unis] ; Brent R. Helliker [États-Unis] ; R Scott Poethig [États-Unis]

Source :

RBID : pubmed:33064860

Abstract

Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.

DOI: 10.1111/nph.17007
PubMed: 33064860


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.</title>
<author>
<name sortKey="Lawrence, Erica H" sort="Lawrence, Erica H" uniqKey="Lawrence E" first="Erica H" last="Lawrence">Erica H. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Springer, Clint J" sort="Springer, Clint J" uniqKey="Springer C" first="Clint J" last="Springer">Clint J. Springer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131</wicri:regionArea>
<wicri:noRegion>19131</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliker, Brent R" sort="Helliker, Brent R" uniqKey="Helliker B" first="Brent R" last="Helliker">Brent R. Helliker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33064860</idno>
<idno type="pmid">33064860</idno>
<idno type="doi">10.1111/nph.17007</idno>
<idno type="wicri:Area/Main/Corpus">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000058</idno>
<idno type="wicri:Area/Main/Curation">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000058</idno>
<idno type="wicri:Area/Main/Exploration">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.</title>
<author>
<name sortKey="Lawrence, Erica H" sort="Lawrence, Erica H" uniqKey="Lawrence E" first="Erica H" last="Lawrence">Erica H. Lawrence</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Springer, Clint J" sort="Springer, Clint J" uniqKey="Springer C" first="Clint J" last="Springer">Clint J. Springer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131</wicri:regionArea>
<wicri:noRegion>19131</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Helliker, Brent R" sort="Helliker, Brent R" uniqKey="Helliker B" first="Brent R" last="Helliker">Brent R. Helliker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104</wicri:regionArea>
<wicri:noRegion>19104</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33064860</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.17007</ELocationID>
<Abstract>
<AbstractText>Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Foundation.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Erica H</ForeName>
<Initials>EH</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0220-3210</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Springer</LastName>
<ForeName>Clint J</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3566-1680</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Helliker</LastName>
<ForeName>Brent R</ForeName>
<Initials>BR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7621-2358</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poethig</LastName>
<ForeName>R Scott</ForeName>
<Initials>RS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6592-5862</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, 19104, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DGE-1845298</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>GM51893</GrantID>
<Agency>National Institues of Health</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">juvenile-to-adult transition</Keyword>
<Keyword MajorTopicYN="N">leaf nitrogen</Keyword>
<Keyword MajorTopicYN="N">miR156</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">specific leaf area</Keyword>
<Keyword MajorTopicYN="N">vegetative phase change</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>17</Hour>
<Minute>11</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33064860</ArticleId>
<ArticleId IdType="doi">10.1111/nph.17007</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, Beveridge CA, Mitter N. 2019. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology 19: e382.</Citation>
</Reference>
<Reference>
<Citation>Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. 2017. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science 258: 122-136.</Citation>
</Reference>
<Reference>
<Citation>Axtell MJ, Bowman JL. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13: 343-349.</Citation>
</Reference>
<Reference>
<Citation>Bassiri A, Irish EE, Scott PR. 1992. Heterochronic effects of Teopod 2 on the growth and photosensitivity of the maize shoot. Plant Cell 4: 497-504.</Citation>
</Reference>
<Reference>
<Citation>Bauer H, Bauer U. 1980. Photosynthesis in leaves of the juvenile and adult phase of ivy (Hedera helix). Physiologia Plantarum 49: 366-372.</Citation>
</Reference>
<Reference>
<Citation>Beydler BD. 2014. Dynamics of gene expression during vegetative phase change in dynamics of gene expression during vegetative phase change in maize. PhD thesis, University of Iowa, Iowa City, IA, USA.</Citation>
</Reference>
<Reference>
<Citation>Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. 2014. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology 164: 1011-1027.</Citation>
</Reference>
<Reference>
<Citation>Bond BJ. 2000. Age-related changes in photosynthesis of woody plants. Trends in Plant Science 5: 349-353.</Citation>
</Reference>
<Reference>
<Citation>Bond BJ, Farnsworth BT, Coulombe RA, Winner WE. 1999. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia 120: 183-192.</Citation>
</Reference>
<Reference>
<Citation>Bongard-Pierce DK, Evans MMS, Poethig RS. 1996. Heteroblastic features of leaf anatomy in maize and their genetic regulation. International Journal of Plant Sciences 157: 331.</Citation>
</Reference>
<Reference>
<Citation>Brodribb T, Hill RS. 1993. A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Australian Journal of Botany 41: 293-305.</Citation>
</Reference>
<Reference>
<Citation>Cameron RJ. 1970. Light intensity and the growth of Eucalyptus seedlings. I. Ontogenetic variation in E. fastigata. Australian Journal of Botany 18: 29-43.</Citation>
</Reference>
<Reference>
<Citation>Canham CD. 1988. An index for understory light levels in and around canopy gaps. Ecology 69: 1634-1638.</Citation>
</Reference>
<Reference>
<Citation>Canham CD, Finzi AC, Pacala SW, Burbank DH. 1994. Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Canadian Journal of Forest Research 24: 337-349.</Citation>
</Reference>
<Reference>
<Citation>Cavender-Bares J, Bazzaz FA. 2000. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8-18.</Citation>
</Reference>
<Reference>
<Citation>Charles LS, Dwyer JM, Smith TJ, Connors S, Marschner P, Mayfield MM. 2018. Seedling growth responses to species, neighborhood, and landscape-scale effects during tropical forest restoration. Ecosphere 9: e02386.</Citation>
</Reference>
<Reference>
<Citation>Chmura DJ, Tjoelker MG. 2008. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine. Tree Physiology 28: 729-742.</Citation>
</Reference>
<Reference>
<Citation>Chuck G, Cigan M, Saeteurn K, Hake S. 2007. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics 39: 544-549.</Citation>
</Reference>
<Reference>
<Citation>Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S et al. 2011. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences, USA 109: 995.</Citation>
</Reference>
<Reference>
<Citation>Coneva V, Chitwood DH. 2018. Genetic and developmental basis for increased leaf thickness in the Arabidopsis Cvi ecotype. Frontiers in Plant Science 9: e322.</Citation>
</Reference>
<Reference>
<Citation>Cui L-G, Shan J-X, Shi M, Gao J-P, Lin H-X. 2014. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. The Plant Journal 80: 1108-1117.</Citation>
</Reference>
<Reference>
<Citation>Dayrell RLC, Arruda AJ, Pierce S, Negreiros D, Meyer PB, Lambers H, Silveira FAO. 2018. Ontogenetic shifts in plant ecological strategies. Functional Ecology 32: 2730-2741.</Citation>
</Reference>
<Reference>
<Citation>de Lobo FA, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis GL, Rodríguez Ortíz CE 2013. Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. Photosynthetica 51: 445-456.</Citation>
</Reference>
<Reference>
<Citation>Duursma RA. 2015. plantecophys - an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10: e0143346.</Citation>
</Reference>
<Reference>
<Citation>Ellsworth DS, Reich PB. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169-178.</Citation>
</Reference>
<Reference>
<Citation>Epron D, Godard D, Cornic G, Genty B. 1995. Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell & Environment 18: 43-51.</Citation>
</Reference>
<Reference>
<Citation>Evans GC, Coombe DE. 1959. Hemispherical and woodland canopy photography and the light climate. The Journal of Ecology 47: 103-113.</Citation>
</Reference>
<Reference>
<Citation>Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19.</Citation>
</Reference>
<Reference>
<Citation>Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60: 2235-2248.</Citation>
</Reference>
<Reference>
<Citation>Feng S, Xu Y, Guo C, Zheng J, Zhou B, Zhang Y, Ding Y, Zhang L, Zhu Z, Wang H et al. 2016. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum). Journal of Experimental Botany 67: 1493-1504.</Citation>
</Reference>
<Reference>
<Citation>Field C, Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ, ed. On the economy of plant form and function. Cambridge, UK: Cambridge University Press, 25-55.</Citation>
</Reference>
<Reference>
<Citation>Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID, Medrano H. 2007. Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytologist 175: 501-511.</Citation>
</Reference>
<Reference>
<Citation>Fouracre JP, Poethig RS. 2019. Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 116: 10168-10177.</Citation>
</Reference>
<Reference>
<Citation>Gao Y, Yang FQ, Cao X, Li CM, Wang Y, Zhao YB, Zeng GJ, Chen DM, Han ZH, Zhang XZ. 2014. Differences in gene expression and regulation during ontogenetic phase change in apple seedlings. Plant Molecular Biology Reporter 32: 357-371.</Citation>
</Reference>
<Reference>
<Citation>Ge Y, Han J, Zhou G, Xu Y, Ding Y, Shi M, Guo C, Wu G. 2018. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. Planta 248: 813-826.</Citation>
</Reference>
<Reference>
<Citation>Givnish TJ. 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63-92.</Citation>
</Reference>
<Reference>
<Citation>Grossnickle SC. 2012. Why seedlings survive: influence of plant attributes. New Forests 43: 711-738.</Citation>
</Reference>
<Reference>
<Citation>Hahn PG, Orrock JL. 2016. Neighbor palatability generates associational effects by altering herbivore foraging behavior. Ecology 97: 2103-2111.</Citation>
</Reference>
<Reference>
<Citation>Hansen DH. 1996. Establishment and persistence characteristics in juvenile leaves and phyllodes of Acacia koa (Leguminosae) in Hawaii. International Journal of Plant Sciences 157: 123-128.</Citation>
</Reference>
<Reference>
<Citation>He J, Xu M, Willmann MR, McCormick K, Hu T, Yang L, Starker CG, Voytas DF, Meyers BC, Poethig RS. 2018. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics 14: e1007337.</Citation>
</Reference>
<Reference>
<Citation>Huang L-C, Weng J-H, Wang C-H, Kuo C-I, Shieh Y-J. 2003. Photosynthetic potentials of in vitro-grown juvenile, adult, and rejuvenated Sequoia sempervirens (D. Don) Endl. shoots. Botanical Bulletin of Academia Sinica 44: 31-35.</Citation>
</Reference>
<Reference>
<Citation>Hutchison KW, Sherman CD, Weber J, Smith SS, Singer PB, Greenwood MS. 1990. Maturation in larch: II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology 94: 1308-1315.</Citation>
</Reference>
<Reference>
<Citation>Irish EE, Karlen S. 1998. Restoration of juvenility in maize shoots by meristem culture. International Journal of Plant Sciences 159: 695-701.</Citation>
</Reference>
<Reference>
<Citation>Ishida A, Yazaki K, Hoe AL. 2005. Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea. Tree Physiology 25: 513-522.</Citation>
</Reference>
<Reference>
<Citation>Jaya E, Kubien DS, Jameson PE, Clemens J. 2010. Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiology 30: 393-403.</Citation>
</Reference>
<Reference>
<Citation>Kabrick JM, Knapp BO, Dey DC, Larsen DR. 2015. Effect of initial seedling size, understory competition, and overstory density on the survival and growth of Pinus echinata seedlings underplanted in hardwood forests for restoration. New Forests 46: 897-918.</Citation>
</Reference>
<Reference>
<Citation>Kerr KL, Meinzer FC, McCulloh KA, Woodruff DR, Marias DE. 2015. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Tree Physiology 35: 535-548.</Citation>
</Reference>
<Reference>
<Citation>Kitajima K, Cordero RA, Wright SJ. 2013. Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival. Annals of Botany 112: 685-699.</Citation>
</Reference>
<Reference>
<Citation>Kubien D, Jaya E, Clemens J. 2007. Differences in the structure and gas exchange physiology of juvenile and adult leaves in Metrosideros excelsa. International Journal of Plant Sciences 168: 563-570.</Citation>
</Reference>
<Reference>
<Citation>Kuusk V, Niinemets Ü, Valladares F. 2018a. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiology 38: 543-557.</Citation>
</Reference>
<Reference>
<Citation>Kuusk V, Niinemets Ü, Valladares F. 2018b. Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Functional Ecology 32: 1479-1491.</Citation>
</Reference>
<Reference>
<Citation>Lamb EG, Cahill JF. 2006. Consequences of differing competitive abilities between juvenile and adult plants. Oikos 112: 502-512.</Citation>
</Reference>
<Reference>
<Citation>Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmerman JK, Uriarte M. 2015. Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology 96: 2157-2169.</Citation>
</Reference>
<Reference>
<Citation>Lawrence EH, Leichty AR, Ma C, Strauss SH, Poethig RS. 2020. Vegetative phase change in Populus tremula × alba. bioRxiv: 2020.06.21.163469.</Citation>
</Reference>
<Reference>
<Citation>Lawrence EH, Stinziano JR, Hanson DT. 2019. Using the rapid A-Ci response (RACiR) in the Li-Cor 6400 to measure developmental gradients of photosynthetic capacity in poplar. Plant Cell and Environment 42: 740-750.</Citation>
</Reference>
<Reference>
<Citation>Leichty AR, Poethig RS. 2019. Development and evolution of age-dependent defenses in ant-acacias. Proceedings of the National Academy of Sciences, USA 116: 15596-15601.</Citation>
</Reference>
<Reference>
<Citation>Li H, Zhao X, Dai H, Wu W, Mao W, Zhang Z. 2012. Tissue culture responsive microRNAs in strawberry. Plant Molecular Biology Reporter 30: 1047-1054.</Citation>
</Reference>
<Reference>
<Citation>Lusk CH, Del Pozo A. 2002. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecology 27: 173-182.</Citation>
</Reference>
<Reference>
<Citation>Makino A, Nakano H, Mae T. 1994. Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiology 105: 173-179.</Citation>
</Reference>
<Reference>
<Citation>Marin-Gonzalez E, Suarez-Lopez P. 2012. ‘And yet it moves’: cell-to-cell and long-distance signaling by plant microRNAs. Plant Science 196: 18-30.</Citation>
</Reference>
<Reference>
<Citation>Meilan R, Ma C. 2006. Poplar (Populus spp.). In: Wang K, ed. Methods in molecular biology: agrobacterium protocols. Totowa, NJ, USA: Humana Press Inc., 143-151.</Citation>
</Reference>
<Reference>
<Citation>Meziane D, Shipley B. 2001. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Annals of Botany 88: 915-927.</Citation>
</Reference>
<Reference>
<Citation>Modrzynski J, Chmura DJ, Tjoelker MG. 2015. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Tree Physiology 35: 879-893.</Citation>
</Reference>
<Reference>
<Citation>Moll JD, Brown JS. 2008. Competition and coexistence with multiple life-history stages. The American Naturalist 171: 839-843.</Citation>
</Reference>
<Reference>
<Citation>Niinemets Ü. 1999. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144: 35-47.</Citation>
</Reference>
<Reference>
<Citation>Niinemets Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 1623-1639.</Citation>
</Reference>
<Reference>
<Citation>Niinemets Ü, Tenhunen JD. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment 20: 845-866.</Citation>
</Reference>
<Reference>
<Citation>Parish JAD, Bazzaz FA. 1985. Ontogenetic niche shifts in old-field annuals. Ecology 66: 1296-1302.</Citation>
</Reference>
<Reference>
<Citation>Parkhurst DF. 1994. Diffusion of CO2 and other gases inside leaves. New Phytologist 126: 449-479.</Citation>
</Reference>
<Reference>
<Citation>Piao T, Comita LS, Jin G, Kim JH. 2013. Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia 172: 207-217.</Citation>
</Reference>
<Reference>
<Citation>Poethig RS. 1988. Heterochronic mutations affecting shoot development in maize. Genetics 119: 959-973.</Citation>
</Reference>
<Reference>
<Citation>Poethig RS. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923-930.</Citation>
</Reference>
<Reference>
<Citation>Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182: 565-588.</Citation>
</Reference>
<Reference>
<Citation>Poorter L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13: 396-410.</Citation>
</Reference>
<Reference>
<Citation>Poorter L, Bongers F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87: 1733-1743.</Citation>
</Reference>
<Reference>
<Citation>Porra RJ, Thompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975: 384-394.</Citation>
</Reference>
<Reference>
<Citation>Reich PB, Ellsworth DS, Walters MB. 1998. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Functional Ecology 12: 948-958.</Citation>
</Reference>
<Reference>
<Citation>Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80: 1955-1969.</Citation>
</Reference>
<Reference>
<Citation>Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: S143-S164.</Citation>
</Reference>
<Reference>
<Citation>Shuttleworth WJ, Gash JHC, Lloyd CR, Moore CJ, Roberts J, de Marques Filho AO, Fisch G, de Silva Filho VP, de Nazare Goes Ribeiro M, Molion LCB et al. 1985. Daily variations of temperature and humidity within and above Amazonian forest. Weather 40: 102-108.</Citation>
</Reference>
<Reference>
<Citation>Silva PO, Batista DS, Henrique J, Cavalcanti F, Koehler AD, Vieira LM, Fernandes AM, Hernan Barrera-Rojas C, Ribeiro DM, Nogueira FTS et al. 2019. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. Annals of Botany 123: 1191-1203.</Citation>
</Reference>
<Reference>
<Citation>Spasojevic MJ, Yablon EA, Oberle B, Myers JA. 2014. Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere 5: 1-20.</Citation>
</Reference>
<Reference>
<Citation>Steppe K, Niinemets Ü, Teskey RO. 2011. Tree size and age-related changes in leaf physiology and their influence on carbon gain. In: Meinzer FC, Lachenbruch B, Dawson TE, eds. Size and age-related changes in tree structure and function. New York, NY, USA: Springer, 235-253.</Citation>
</Reference>
<Reference>
<Citation>Stief A, Altmann S, Hoffmann K, Pant BD, Scheible W-R, Bäurle I. 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26: 1792-1807.</Citation>
</Reference>
<Reference>
<Citation>Still C, Powell R, Aubrecht D, Kim Y, Helliker B, Roberts D, Richardson AD, Goulden M. 2019. Thermal imaging in plant and ecosystem ecology: applications and challenges. Ecosphere 10: e02768.</Citation>
</Reference>
<Reference>
<Citation>Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE. 2008. Microarray analysis of vegetative phase change in maize. The Plant Journal 56: 1045-1057.</Citation>
</Reference>
<Reference>
<Citation>Sun J, Yao F, Wu J, Zhang P, Xu W. 2018. Effect of nitrogen levels on photosynthetic parameters, morphological and chemical characters of saplings and trees in a temperate forest. Journal of Forestry Research 29: 1481-1488.</Citation>
</Reference>
<Reference>
<Citation>Telfer A, Bollman KM, Poethig RS. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124: 645-654.</Citation>
</Reference>
<Reference>
<Citation>Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S. 2006. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany. 57: 343-354.</Citation>
</Reference>
<Reference>
<Citation>Terashima I, Hikosaka K. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell & Environment 18: 1111-1128.</Citation>
</Reference>
<Reference>
<Citation>Tomeo N. 2019. Tomeopaste/AQ_curves: AQ_curve fitting release 1 (v.1.0.0). Zenodo. doi: 10.5281/zenodo.3497557.</Citation>
</Reference>
<Reference>
<Citation>Velikova V, Loreto F, Brilli F, Stefanov D, Yordanov I. 2008. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids. Plant Biology 10: 55-64.</Citation>
</Reference>
<Reference>
<Citation>Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F. 2020. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, Cell & Environment 43: 1613-1624.</Citation>
</Reference>
<Reference>
<Citation>Waggoner PE, Reifsnyder WE. 1968. Simulation of the temperature, humidity and evaporation profiles in a leaf canopy. Journal of Applied Meteorology 7: 400-409.</Citation>
</Reference>
<Reference>
<Citation>Walters MB, Reich PB. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143: 143-154.</Citation>
</Reference>
<Reference>
<Citation>Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS. 2011. MiRNA control of vegetative phase change in trees. PLoS Genetics 7: e1002012.</Citation>
</Reference>
<Reference>
<Citation>Westoby M, Reich PB, Wright IJ. 2013. Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytologist 199: 322-323.</Citation>
</Reference>
<Reference>
<Citation>Willmann MR, Poethig RS. 2007. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology 10: 503-511.</Citation>
</Reference>
<Reference>
<Citation>Wright IJ, Cannon K. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology 15: 351-359.</Citation>
</Reference>
<Reference>
<Citation>Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750-759.</Citation>
</Reference>
<Reference>
<Citation>Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539-3547.</Citation>
</Reference>
<Reference>
<Citation>Xu M, Hu T, Zhao J, Park M-Y, Earley KW, Wu G, Yang L, Poethig RS. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genetics 12: e1006263.</Citation>
</Reference>
<Reference>
<Citation>Yin X, Sun Z, Struik PC, Van Der Putten PEL, Van Ieperen W, Harbinson J. 2011. Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content. Plant, Cell & Environment 34: 2183-2199.</Citation>
</Reference>
<Reference>
<Citation>Yu H, Li JT. 2007. Physiological comparisons of true leaves and phyllodes in Acacia mangium seedlings. Photosynthetica 45: 312-316.</Citation>
</Reference>
<Reference>
<Citation>Zhang SD, Ling LZ, Zhang QF, Di XuJ, Cheng L. 2015. Evolutionary comparison of two combinatorial regulators of SBP-box genes, MiR156 and MiR529, in plants. PLoS ONE 10: e0124621.</Citation>
</Reference>
<Reference>
<Citation>Zhou H, Akçay E, Helliker BR. 2019. Estimating C4 photosynthesis parameters by fitting intensive A/Ci curves. Photosynthesis Research 141: 181-194.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Lawrence, Erica H" sort="Lawrence, Erica H" uniqKey="Lawrence E" first="Erica H" last="Lawrence">Erica H. Lawrence</name>
</noRegion>
<name sortKey="Helliker, Brent R" sort="Helliker, Brent R" uniqKey="Helliker B" first="Brent R" last="Helliker">Brent R. Helliker</name>
<name sortKey="Poethig, R Scott" sort="Poethig, R Scott" uniqKey="Poethig R" first="R Scott" last="Poethig">R Scott Poethig</name>
<name sortKey="Springer, Clint J" sort="Springer, Clint J" uniqKey="Springer C" first="Clint J" last="Springer">Clint J. Springer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000269 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000269 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33064860
   |texte=   MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33064860" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020